8 research outputs found

    Compact modeling of gate tunneling leakage current in advanced nanoscale soi mosfets

    Get PDF
    En esta tesis se han desarrollado modelos compactos de corriente de fuga por túnel de puerta en SOI MOSFET (de simple y doble puerta) avanzados basados en una aproximación WKB de la probabilidad de túnel. Se han estudiado los materiales dieléctricos high-k más prometedores para los diferentes requisitos de nodos tecnológicos de acuerdo ala hoja de ruta ITRS de miniaturización de dispositivos electrónicos. Hemos presentado un modelo compacto de particionamiento de la corriente de fuga de puerta para un MOSFET nanométrico de doble puerta (DG MOSFET), utilizando modelos analíticos de la corriente de fuga por el túnel directo de puerta. Se desarrollaron también Los modelos analíticos dependientes de la temperatura de la corriente de túnel en la región de inversión y de la corriente túnel asistido por trampas en régimen subumbral. Finalmente, se desarrolló una técnica de extracción automática de parámetros de nuestro modelo compacto en DG MOSFET incluyendo efectos de canal corto. La corriente de la puerta por túnel directo y asistido por trampas modelada mediante los parámetros extraídos se verificó exitosamente mediante comparación con medidas experimentales

    Area equivalent WKB Compact modeling approach for tunneling probability in Hetero-Junction TFETs including ambipolar behaviour

    No full text
    This paper introduces an innovative modeling approach for calculating the band-to-band (B2B) tunneling probability in tunnel-field effect transistors (TFETs). The field of application is the usage in TFET compact models. Looking at a tunneling process in TFETs, carriers try to tunnel through an energy barrier which is defined by the device band diagram. The tunneling energy barrier is approximated by an approach which assumes an area equivalent (AE) triangular shaped energy profile. The simplified energy triangle is suitable to be used in the Wentzel-Kramers-Brillouin (WKB) approximation. Referring to the area instead of the electric field at individual points is shown to be a more robust approach in terms of numerical stability. The derived AE approach is implemented in an existing compact model for double-gate (DG) TFETs. In order to verify and show the numerical stability of this approach, modeling results are compared to TCAD Sentaurus simulation data for various sets of device parameters, whereby the simulations include both ON- and AMBIPOLAR-state of the TFET. In addition to the various device dimensions, the source material is also changed to demonstrate the feasibility of simulating hetero-junctions. Comparing the modeling approach with TCAD data shows a good match. Apart the limitations demonstrated and discussed in this paper, the main advantage of the AE approach is the simplicity and a better fit to TCAD data in comparison to the quasi-2D WKB approach

    Device Physics, Modeling and Simulation of Organic Electrochemical Transistors

    No full text
    In this work, we investigate organic electrochemical transistors (OECTs) as a novel artificial electronic device for the realization of synaptic behavior, bioelectronics, and a variety of applications. A numerical method considering the Poisson-Boltzmann statistics is introduced to reproduce associated charge densities, electrostatics and switching properties of OECTs. We shed light on the working principle of OECTs by taking into account the ionic charge distribution in the electrolyte and incomplete ionization of the organic semiconductor describing the underlying electrochemical redox reaction. This enables analyzing the OECTs electrical performance as well as a simplified chemical properties via an electrical double layer, doping and de-doping of the OMIEC layer. We have fabricated, characterized, simulated and analyzed OECTs based on PEDOT:PSS, and we show that the proposed model reveals important properties of the device’s working mechanism. The model shows a good agreement with the experimental data of the fabricated devices

    Unraveling Structure and Device Operation of Organic Permeable Base Transistors

    No full text
    Organic permeable base transistors (OPBTs) are of great interest for flexible electronic circuits, as they offer very large on-current density and a record-high transition frequency. They rely on a vertical device architecture with current transport through native pinholes in a central base electrode. This study investigates the impact of pinhole density and pinhole diameter on the DC device performance in OPBTs based on experimental data and TCAD simulation results. A pinhole density of NPin = 54 µm−2 and pinhole diameters around LPin = 15 nm are found in the devices. Simulations show that a variation of pinhole diameter and density around these numbers has only a minor impact on the DC device characteristics. A variation of the pinhole diameter and density by up to 100% lead to a deviation of less than 4% in threshold voltage, on/off current ratio, and sub-threshold slope. Hence, the fabrication of OPBTs with reliable device characteristics is possible regardless of statistical deviations in thin film formation. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei
    corecore